How to create arrays of strings#
Awkward Arrays can contain strings, although these strings are just a special view of lists of uint8 numbers. As such, the variable-length data are efficiently stored.
NumPy’s strings are padded to have equal width, and Pandas’s strings are Python objects. Awkward Array doesn’t have nearly as many functions for manipulating arrays of strings as NumPy and Pandas, though.
import awkward as ak
import numpy as np
From Python strings#
The ak.Array constructor and ak.from_iter() recognize strings, and strings are returned by ak.to_list().
ak.Array(["one", "two", "three"])
['one', 'two', 'three'] --------- backend: cpu nbytes: 43 B type: 3 * string
They may be nested within anything.
ak.Array([["one", "two"], [], ["three"]])
[['one', 'two'], [], ['three']] ---------------- backend: cpu nbytes: 75 B type: 3 * var * string
From NumPy arrays#
NumPy strings are also recognized by ak.from_numpy() and ak.to_numpy().
numpy_array = np.array(["one", "two", "three", "four"])
numpy_array
array(['one', 'two', 'three', 'four'], dtype='<U5')
awkward_array = ak.Array(numpy_array)
awkward_array
['one', 'two', 'three', 'four'] --------- backend: cpu nbytes: 84 B type: 4 * string
Operations with strings#
Since strings are really just lists, some of the list operations “just work” on strings.
ak.num(awkward_array)
[3, 3, 5, 4] --- backend: cpu nbytes: 32 B type: 4 * int64
awkward_array[:, 1:]
['ne', 'wo', 'hree', 'our'] -------- backend: cpu nbytes: 51 B type: 4 * string
Others had to be specially overloaded for the string case, such as string-equality. The default meaning for == would be to descend to the lowest level and compare numbers (characters, in this case).
awkward_array == "three"
[False, False, True, False] ------- backend: cpu nbytes: 4 B type: 4 * bool
awkward_array == ak.Array(["ONE", "TWO", "three", "four"])
[False, False, True, True] ------- backend: cpu nbytes: 4 B type: 4 * bool
Similarly, ak.sort() and ak.argsort() sort strings lexicographically, not individual characters.
ak.sort(awkward_array)
['four', 'one', 'three', 'two'] --------- backend: cpu nbytes: 79 B type: 4 * string
Still other operations had to be inhibited, since they wouldn’t make sense for strings.
np.sqrt(awkward_array)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[11], line 1
----> 1 np.sqrt(awkward_array)
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/highlevel.py:1632, in Array.__array_ufunc__(self, ufunc, method, *inputs, **kwargs)
1567 """
1568 Intercepts attempts to pass this Array to a NumPy
1569 [universal functions](https://docs.scipy.org/doc/numpy/reference/ufuncs.html)
(...) 1629 See also #__array_function__.
1630 """
1631 name = f"{type(ufunc).__module__}.{ufunc.__name__}.{method!s}"
-> 1632 with ak._errors.OperationErrorContext(name, inputs, kwargs):
1633 return ak._connect.numpy.array_ufunc(ufunc, method, inputs, kwargs)
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_errors.py:80, in ErrorContext.__exit__(self, exception_type, exception_value, traceback)
78 self._slate.__dict__.clear()
79 # Handle caught exception
---> 80 raise self.decorate_exception(exception_type, exception_value)
81 else:
82 # Step out of the way so that another ErrorContext can become primary.
83 if self.primary() is self:
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/highlevel.py:1633, in Array.__array_ufunc__(self, ufunc, method, *inputs, **kwargs)
1631 name = f"{type(ufunc).__module__}.{ufunc.__name__}.{method!s}"
1632 with ak._errors.OperationErrorContext(name, inputs, kwargs):
-> 1633 return ak._connect.numpy.array_ufunc(ufunc, method, inputs, kwargs)
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_connect/numpy.py:469, in array_ufunc(ufunc, method, inputs, kwargs)
461 raise TypeError(
462 "no {}.{} overloads for custom types: {}".format(
463 type(ufunc).__module__, ufunc.__name__, ", ".join(error_message)
464 )
465 )
467 return None
--> 469 out = ak._broadcasting.broadcast_and_apply(
470 inputs,
471 action,
472 depth_context=depth_context,
473 lateral_context=lateral_context,
474 allow_records=False,
475 function_name=ufunc.__name__,
476 )
478 out_named_axis = functools.reduce(
479 _unify_named_axis, lateral_context[NAMED_AXIS_KEY].named_axis
480 )
481 if len(out) == 1:
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:1220, in broadcast_and_apply(inputs, action, depth_context, lateral_context, allow_records, left_broadcast, right_broadcast, numpy_to_regular, regular_to_jagged, function_name, broadcast_parameters_rule)
1218 backend = backend_of(*inputs, coerce_to_common=False)
1219 isscalar = []
-> 1220 out = apply_step(
1221 backend,
1222 broadcast_pack(inputs, isscalar),
1223 action,
1224 0,
1225 depth_context,
1226 lateral_context,
1227 {
1228 "allow_records": allow_records,
1229 "left_broadcast": left_broadcast,
1230 "right_broadcast": right_broadcast,
1231 "numpy_to_regular": numpy_to_regular,
1232 "regular_to_jagged": regular_to_jagged,
1233 "function_name": function_name,
1234 "broadcast_parameters_rule": broadcast_parameters_rule,
1235 },
1236 )
1237 assert isinstance(out, tuple)
1238 return tuple(broadcast_unpack(x, isscalar) for x in out)
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:1198, in apply_step(backend, inputs, action, depth, depth_context, lateral_context, options)
1196 return result
1197 elif result is None:
-> 1198 return continuation()
1199 else:
1200 raise AssertionError(result)
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:1167, in apply_step.<locals>.continuation()
1165 # Any non-string list-types?
1166 elif any(x.is_list and not is_string_like(x) for x in contents):
-> 1167 return broadcast_any_list()
1169 # Any RecordArrays?
1170 elif any(x.is_record for x in contents):
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:670, in apply_step.<locals>.broadcast_any_list()
667 nextinputs.append(x)
668 nextparameters.append(NO_PARAMETERS)
--> 670 outcontent = apply_step(
671 backend,
672 nextinputs,
673 action,
674 depth + 1,
675 copy.copy(depth_context),
676 lateral_context,
677 options,
678 )
679 assert isinstance(outcontent, tuple)
680 parameters = parameters_factory(nextparameters, len(outcontent))
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:1180, in apply_step(backend, inputs, action, depth, depth_context, lateral_context, options)
1173 else:
1174 raise ValueError(
1175 "cannot broadcast: {}{}".format(
1176 ", ".join(repr(type(x)) for x in inputs), in_function(options)
1177 )
1178 )
-> 1180 result = action(
1181 inputs,
1182 depth=depth,
1183 depth_context=depth_context,
1184 lateral_context=lateral_context,
1185 continuation=continuation,
1186 backend=backend,
1187 options=options,
1188 )
1190 if isinstance(result, tuple) and all(isinstance(x, Content) for x in result):
1191 if any(content.backend is not backend for content in result):
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_connect/numpy.py:405, in array_ufunc.<locals>.action(inputs, **ignore)
400 # Do we have all-strings? If so, we can't proceed
401 if all(
402 x.is_list and x.parameter("__array__") in ("string", "bytestring")
403 for x in contents
404 ):
--> 405 raise TypeError(
406 f"{type(ufunc).__module__}.{ufunc.__name__} is not implemented for string types. "
407 "To register an implementation, add a name to these string(s) and register a behavior overload"
408 )
410 if ufunc is numpy.matmul:
411 raise NotImplementedError(
412 "matrix multiplication (`@` or `np.matmul`) is not yet implemented for Awkward Arrays"
413 )
TypeError: numpy.sqrt is not implemented for string types. To register an implementation, add a name to these string(s) and register a behavior overload
This error occurred while calling
numpy.sqrt.__call__(
<Array ['one', 'two', 'three', 'four'] type='4 * string'>
)
Categorical strings#
A large set of strings with few unique values are more efficiently manipulated as integers than as strings. In Pandas, this is categorical data, in R, it’s called a factor, and in Arrow and Parquet, it’s dictionary encoding.
The ak.str.to_categorical() (requires PyArrow) function makes Awkward Arrays categorical in this sense. ak.to_arrow() and ak.to_parquet() recognize categorical data and convert it to the corresponding Arrow and Parquet types.
uncategorized = ak.Array(["three", "one", "two", "two", "three", "one", "one", "one"])
uncategorized
['three', 'one', 'two', 'two', 'three', 'one', 'one', 'one'] --------- backend: cpu nbytes: 100 B type: 8 * string
categorized = ak.str.to_categorical(uncategorized)
categorized
['three', 'one', 'two', 'two', 'three', 'one', 'one', 'one'] --------- backend: cpu nbytes: 107 B type: 8 * categorical[type=string]
Internally, the data now have an index that selects from a set of unique strings.
categorized.layout.index
<Index dtype='int64' len='8'>[0 1 2 2 0 1 1 1]</Index>
ak.Array(categorized.layout.content)
['three', 'one', 'two'] --------- backend: cpu nbytes: 43 B type: 3 * string
The main advantage to Awkward categorical data (other than proper conversions to Arrow and Parquet) is that equality is performed using the index integers.
categorized == "one"
[False, True, False, False, False, True, True, True] ------- backend: cpu nbytes: 8 B type: 8 * bool
With ArrayBuilder#
ak.ArrayBuilder() is described in more detail in this tutorial, but you can add strings by calling the string method or simply appending them.
(This is what ak.from_iter() uses internally to accumulate data.)
builder = ak.ArrayBuilder()
builder.string("one")
builder.append("two")
builder.append("three")
array = builder.snapshot()
array
['one', 'two', 'three'] --------- backend: cpu nbytes: 43 B type: 3 * string