How to perform computations with NumPy#

Awkward Array’s integration with NumPy allows you to use NumPy’s array functions on data with complex structures, including ragged and heterogeneous arrays.

import awkward as ak
import numpy as np

Universal functions (ufuncs)#

NumPy’s universal functions (ufuncs) are functions that operate elementwise on arrays. They are broadcasting-aware, so they can naturally handle data structures like ragged arrays that are common in Awkward Arrays.

Here’s an example of applying np.sqrt, a NumPy ufunc, to an Awkward Array:

data = ak.Array([[1, 4, 9], [], [16, 25]])

np.sqrt(data)
[[1, 2, 3],
 [],
 [4, 5]]
-----------------------
type: 3 * var * float64

Notice that the ufunc applies to the numeric data, passing through all dimensions of nested lists, even if those lists have variable length. This also applies to heterogeneous data, in which the data are not all of the same type.

data = ak.Array([[1, 4, 9], [], 16, [[[25]]]])

np.sqrt(data)
[[1, 2, 3],
 [],
 4,
 [[[5]]]]
---------------------------
type: 4 * union[
    var * union[
        float64,
        var * var * float64
    ],
    float64
]

Unary and binary operations on Awkward Arrays, such as +, -, >, and ==, are actually calling NumPy ufuncs. For instance, +:

array1 = ak.Array([[1, 2, 3], [], [4, 5]])
array2 = ak.Array([[10, 20, 30], [], [40, 50]])

array1 + array2
[[11, 22, 33],
 [],
 [44, 55]]
---------------------
type: 3 * var * int64

is actually np.add:

np.add(array1, array2)
[[11, 22, 33],
 [],
 [44, 55]]
---------------------
type: 3 * var * int64

Arrays with record fields#

Ufuncs can only be applied to numerical data in lists, not records.

records = ak.Array([{"x": 4, "y": 9}, {"x": 16, "y": 25}])
np.sqrt(records)
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[7], line 1
----> 1 np.sqrt(records)

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/highlevel.py:1594, in Array.__array_ufunc__(self, ufunc, method, *inputs, **kwargs)
   1592 name = f"{type(ufunc).__module__}.{ufunc.__name__}.{method!s}"
   1593 with ak._errors.OperationErrorContext(name, inputs, kwargs):
-> 1594     return ak._connect.numpy.array_ufunc(ufunc, method, inputs, kwargs)

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_connect/numpy.py:469, in array_ufunc(ufunc, method, inputs, kwargs)
    461         raise TypeError(
    462             "no {}.{} overloads for custom types: {}".format(
    463                 type(ufunc).__module__, ufunc.__name__, ", ".join(error_message)
    464             )
    465         )
    467     return None
--> 469 out = ak._broadcasting.broadcast_and_apply(
    470     inputs,
    471     action,
    472     depth_context=depth_context,
    473     lateral_context=lateral_context,
    474     allow_records=False,
    475     function_name=ufunc.__name__,
    476 )
    478 out_named_axis = functools.reduce(
    479     _unify_named_axis, lateral_context[NAMED_AXIS_KEY].named_axis
    480 )
    481 if len(out) == 1:

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:1200, in broadcast_and_apply(inputs, action, depth_context, lateral_context, allow_records, left_broadcast, right_broadcast, numpy_to_regular, regular_to_jagged, function_name, broadcast_parameters_rule)
   1198 backend = backend_of(*inputs, coerce_to_common=False)
   1199 isscalar = []
-> 1200 out = apply_step(
   1201     backend,
   1202     broadcast_pack(inputs, isscalar),
   1203     action,
   1204     0,
   1205     depth_context,
   1206     lateral_context,
   1207     {
   1208         "allow_records": allow_records,
   1209         "left_broadcast": left_broadcast,
   1210         "right_broadcast": right_broadcast,
   1211         "numpy_to_regular": numpy_to_regular,
   1212         "regular_to_jagged": regular_to_jagged,
   1213         "function_name": function_name,
   1214         "broadcast_parameters_rule": broadcast_parameters_rule,
   1215     },
   1216 )
   1217 assert isinstance(out, tuple)
   1218 return tuple(broadcast_unpack(x, isscalar) for x in out)

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:1178, in apply_step(backend, inputs, action, depth, depth_context, lateral_context, options)
   1176     return result
   1177 elif result is None:
-> 1178     return continuation()
   1179 else:
   1180     raise AssertionError(result)

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:1147, in apply_step.<locals>.continuation()
   1145 # Any non-string list-types?
   1146 elif any(x.is_list and not is_string_like(x) for x in contents):
-> 1147     return broadcast_any_list()
   1149 # Any RecordArrays?
   1150 elif any(x.is_record for x in contents):

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:671, in apply_step.<locals>.broadcast_any_list()
    668         nextinputs.append(x)
    669         nextparameters.append(NO_PARAMETERS)
--> 671 outcontent = apply_step(
    672     backend,
    673     nextinputs,
    674     action,
    675     depth + 1,
    676     copy.copy(depth_context),
    677     lateral_context,
    678     options,
    679 )
    680 assert isinstance(outcontent, tuple)
    681 parameters = parameters_factory(nextparameters, len(outcontent))

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:1178, in apply_step(backend, inputs, action, depth, depth_context, lateral_context, options)
   1176     return result
   1177 elif result is None:
-> 1178     return continuation()
   1179 else:
   1180     raise AssertionError(result)

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:1151, in apply_step.<locals>.continuation()
   1149 # Any RecordArrays?
   1150 elif any(x.is_record for x in contents):
-> 1151     return broadcast_any_record()
   1153 else:
   1154     raise ValueError(
   1155         "cannot broadcast: {}{}".format(
   1156             ", ".join(repr(type(x)) for x in inputs), in_function(options)
   1157         )
   1158     )

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:503, in apply_step.<locals>.broadcast_any_record()
    501 def broadcast_any_record():
    502     if not options["allow_records"]:
--> 503         raise ValueError(f"cannot broadcast records{in_function(options)}")
    505     frozen_record_fields: frozenset[str] | None = UNSET
    506     first_record = next(c for c in contents if c.is_record)

ValueError: cannot broadcast records in sqrt

This error occurred while calling

    numpy.sqrt.__call__(
        <Array [{x: 4, y: 9}, {x: 16, ...}] type='2 * {x: int64, y: int64}'>
    )

However, you can pull each field out of a record and apply the ufunc to it.

np.sqrt(records.x)
[2,
 4]
-----------------
type: 2 * float64
np.sqrt(records.y)
[3,
 5]
-----------------
type: 2 * float64

If you want the result wrapped up in a new array of records, you can use ak.zip() to do that.

ak.zip({"x": np.sqrt(records.x), "y": np.sqrt(records.y)})
[{x: 2, y: 3},
 {x: 4, y: 5}]
---------------
type: 2 * {
    x: float64,
    y: float64
}

Here’s an idiom that would apply a ufunc to every field individually, and then wrap up the result as a new record with the same fields (using ak.fields(), ak.unzip(), and ak.zip()):

ak.zip({key: np.sqrt(value) for key, value in zip(ak.fields(records), ak.unzip(records))})
[{x: 2, y: 3},
 {x: 4, y: 5}]
---------------
type: 2 * {
    x: float64,
    y: float64
}

The reaons that Awkward Array does not do this automatically is to prevent mistakes: it’s common for records to represent coordinates of data points, and if the coordinates are not Cartesian, the one-to-one application is not correct.

Using non-NumPy ufuncs#

NumPy-compatible ufuncs exist in other libraries, like SciPy, and can be applied in the same way. Here’s how you can apply scipy.special.gamma and scipy.special.erf:

import scipy.special

data = ak.Array([[0.1, 0.2, 0.3], [], [0.4, 0.5]])
scipy.special.gamma(data)
[[9.51, 4.59, 2.99],
 [],
 [2.22, 1.77]]
-----------------------
type: 3 * var * float64
scipy.special.erf(data)
[[0.112, 0.223, 0.329],
 [],
 [0.428, 0.52]]
-----------------------
type: 3 * var * float64

You can even create your own ufuncs using Numba’s @nb.vectorize:

import numba as nb

@nb.vectorize
def gcd_euclid(x, y):
    # computation that is more complex than a formula
    while y != 0:
        x, y = y, x % y
    return x
x = ak.Array([[10, 20, 30], [], [40, 50]])
y = ak.Array([[5, 40, 15], [], [24, 255]])
gcd_euclid(x, y)
[[5, 20, 15],
 [],
 [8, 5]]
---------------------
type: 3 * var * int64

Since Numba has JIT-compiled this function, it would run much faster on large arrays than custom Python code.

Non-ufunc NumPy functions#

Some NumPy functions don’t satisfy the ufunc protocol, but have been implemented for Awkward Arrays because they are useful. You can tell when a NumPy function has an Awkward Array implementation when a function with the same name and signature exists in both libraries.

For instance, np.where works on Awkward Arrays because ak.where() exists:

np.where(y % 2 == 0, x, y) 
[[5, 20, 15],
 [],
 [40, 255]]
---------------------
type: 3 * var * int64

(The above selects elements from x when y is even and elements from y when y is odd.)

Similarly, np.concatenate works on Awkward Arrays because ak.concatenate() exists:

np.concatenate([x, y])
[[10, 20, 30],
 [],
 [40, 50],
 [5, 40, 15],
 [],
 [24, 255]]
---------------------
type: 6 * var * int64
np.concatenate([x, y], axis=1)
[[10, 20, 30, 5, 40, 15],
 [],
 [40, 50, 24, 255]]
-------------------------
type: 3 * var * int64

Other NumPy functions, without an equivalent in the Awkward Array library, will work only if the Awkward Array can be converted into a NumPy array.

Ragged arrays can’t be converted to NumPy:

np.fft.fft(ak.Array([[1.1, 2.2, 3.3], [], [7.7, 8.8, 9.9]]))
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[21], line 1
----> 1 np.fft.fft(ak.Array([[1.1, 2.2, 3.3], [], [7.7, 8.8, 9.9]]))

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/highlevel.py:1610, in Array.__array_function__(self, func, types, args, kwargs)
   1596 def __array_function__(self, func, types, args, kwargs):
   1597     """
   1598     Intercepts attempts to pass this Array to those NumPy functions other
   1599     than universal functions that have an Awkward equivalent.
   (...)
   1608     See also #__array_ufunc__.
   1609     """
-> 1610     return ak._connect.numpy.array_function(
   1611         func, types, args, kwargs, behavior=self._behavior, attrs=self._attrs
   1612     )

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_connect/numpy.py:110, in array_function(func, types, args, kwargs, behavior, attrs)
    107 unique_backends = frozenset(_find_backends(all_arguments))
    108 backend = common_backend(unique_backends)
--> 110 rectilinear_args = tuple(_to_rectilinear(x, backend) for x in args)
    111 rectilinear_kwargs = {k: _to_rectilinear(v, backend) for k, v in kwargs.items()}
    112 result = func(*rectilinear_args, **rectilinear_kwargs)

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_connect/numpy.py:110, in <genexpr>(.0)
    107 unique_backends = frozenset(_find_backends(all_arguments))
    108 backend = common_backend(unique_backends)
--> 110 rectilinear_args = tuple(_to_rectilinear(x, backend) for x in args)
    111 rectilinear_kwargs = {k: _to_rectilinear(v, backend) for k, v in kwargs.items()}
    112 result = func(*rectilinear_args, **rectilinear_kwargs)

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_connect/numpy.py:79, in _to_rectilinear(arg, backend)
     70     # Otherwise, cast to layout and convert
     71     else:
     72         layout = ak.to_layout(
     73             arg,
     74             allow_record=False,
   (...)
     77             string_policy="error",
     78         )
---> 79         return layout.to_backend(backend).to_backend_array(allow_missing=True)
     80 elif isinstance(arg, tuple):
     81     return tuple(_to_rectilinear(x, backend) for x in arg)

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/contents/content.py:1112, in Content.to_backend_array(self, allow_missing, backend)
   1110 else:
   1111     backend = regularize_backend(backend)
-> 1112 return self._to_backend_array(allow_missing, backend)

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/contents/listoffsetarray.py:2106, in ListOffsetArray._to_backend_array(self, allow_missing, backend)
   2104     return buffer.view(np.dtype(("S", max_count)))
   2105 else:
-> 2106     return self.to_RegularArray()._to_backend_array(allow_missing, backend)

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/contents/listoffsetarray.py:284, in ListOffsetArray.to_RegularArray(self)
    279 _size = Index64.empty(1, self._backend.index_nplike)
    280 assert (
    281     _size.nplike is self._backend.index_nplike
    282     and self._offsets.nplike is self._backend.index_nplike
    283 )
--> 284 self._backend.maybe_kernel_error(
    285     self._backend[
    286         "awkward_ListOffsetArray_toRegularArray",
    287         _size.dtype.type,
    288         self._offsets.dtype.type,
    289     ](
    290         _size.data,
    291         self._offsets.data,
    292         self._offsets.length,
    293     )
    294 )
    295 size = self._backend.index_nplike.index_as_shape_item(_size[0])
    296 length = self._offsets.length - 1

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_backends/backend.py:67, in Backend.maybe_kernel_error(self, error)
     65     return
     66 else:
---> 67     raise ValueError(self.format_kernel_error(error))

ValueError: cannot convert to RegularArray because subarray lengths are not regular (in compiled code: https://github.com/scikit-hep/awkward/blob/awkward-cpp-41/awkward-cpp/src/cpu-kernels/awkward_ListOffsetArray_toRegularArray.cpp#L22)

But arrays with equal-sized lists can:

np.fft.fft(ak.Array([[1.1, 2.2, 3.3], [4.4, 5.5, 6.6], [7.7, 8.8, 9.9]]))
[[6.6+0j, -1.65+0.953j, -1.65+-0.953j],
 [16.5+0j, -1.65+0.953j, -1.65+-0.953j],
 [26.4+0j, -1.65+0.953j, -1.65+-0.953j]]
----------------------------------------
type: 3 * 3 * complex128