ak.type#
Defined in awkward.operations.ak_type on line 21.
- ak.type(array, *, behavior=None)#
- Parameters:
array – Array-like data (anything
ak.to_layout
recognizes).behavior (None or dict) – Custom
ak.behavior
for the output type, if high-level.
The high-level type of an array
(many types supported, including all
Awkward Arrays and Records) as ak.types.Type
objects.
The high-level type ignores layout differences like
ak.contents.ListArray
versus ak.contents.ListOffsetArray
, but
not differences like “regular-sized lists” (i.e.
ak.contents.RegularArray
) versus “variable-sized lists” (i.e.
ak.contents.ListArray
and similar).
Types are rendered as Datashape strings, which makes the same distinctions.
For example,
>>> array = ak.Array([[{"x": 1.1, "y": [1]}, {"x": 2.2, "y": [2, 2]}],
... [],
... [{"x": 3.3, "y": [3, 3, 3]}]])
has type
>>> ak.type(array).show()
3 * var * {
x: float64,
y: var * int64
}
but
>>> array = ak.Array(np.arange(2*3*5).reshape(2, 3, 5))
has type
>>> ak.type(array).show()
2 * 3 * 5 * int64
Some cases, like heterogeneous data, require extensions beyond the Datashape specification. For example,
>>> array = ak.Array([1, "two", [3, 3, 3]])
has type
>>> ak.type(array).show()
3 * union[
int64,
string,
var * int64
]
but “union” is not a Datashape type-constructor. (Its syntax is similar to existing type-constructors, so it’s a plausible addition to the language.)