How to examine a single item in detail#
It’s often useful to pull out a single item from an array to inspect its contents, particularly in the early stages of a data analysis, to get a sense of the data’s structure. This tutorial shows how to extract one item from an Awkward Array and examine it in different ways.
For this example, we’ll to use the Chicago taxi trips dataset from 10 minutes to Awkward Array. Recall that this dataset includes information about trips by various taxis collected over a few years, enriched with GPS path data.
Loading the dataset#
First, let’s load the dataset using the ak.from_parquet()
function. We will only load the first row group, for the sake of this demonstration:
import awkward as ak
url = "https://zenodo.org/records/14537442/files/chicago-taxi.parquet"
taxi = ak.from_parquet(
url,
row_groups=[0],
columns=["trip.km", "trip.begin.l*", "trip.end.l*", "trip.path.*"],
)
What is a single item?#
The first “item” of this dataset could be a single taxi, which comprises many trips.
single_taxi = taxi[5]
single_taxi
[{trip: {km: 29.6, begin: {lon: -87.9, ...}, end: {...}, path: ..., ...}}, {trip: {km: 2, begin: {lon: -87.6, ...}, end: {...}, path: [...]}}, {trip: {km: 2.46, begin: {lon: -87.6, ...}, end: {...}, path: ..., ...}}, {trip: {km: 50.8, begin: {lon: -87.9, ...}, end: {...}, path: []}}, {trip: {km: 27, begin: {lon: -87.8, ...}, end: {...}, path: [...]}}, {trip: {km: 18.6, begin: {lon: -87.9, ...}, end: {...}, path: ..., ...}}, {trip: {km: 20.2, begin: {lon: -87.9, ...}, end: {...}, path: ..., ...}}, {trip: {km: 2.27, begin: {lon: -87.6, ...}, end: {...}, path: ..., ...}}, {trip: {km: 0.724, begin: {lon: -87.6, ...}, end: {...}, path: ..., ...}}, {trip: {km: 1.05, begin: {lon: -87.6, ...}, end: {...}, path: ..., ...}}, ..., {trip: {km: 2.77, begin: {lon: -87.7, ...}, end: {...}, path: ..., ...}}, {trip: {km: 1.37, begin: {lon: -87.6, ...}, end: {...}, path: ..., ...}}, {trip: {km: 1.74, begin: {lon: -87.6, ...}, end: {...}, path: ..., ...}}, {trip: {km: 0.612, begin: {lon: -87.6, ...}, end: {...}, path: ..., ...}}, {trip: {km: 14.4, begin: {lon: -87.6, ...}, end: {...}, path: ..., ...}}, {trip: {km: 24.1, begin: {lon: -87.9, ...}, end: {...}, path: []}}, {trip: {km: 33.4, begin: {lon: -87.9, ...}, end: {...}, path: []}}, {trip: {km: 24.3, begin: {lon: -87.9, ...}, end: {...}, path: ..., ...}}, {trip: {km: 1.83, begin: {lon: -87.7, ...}, end: {...}, path: ..., ...}}] -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- backend: cpu nbytes: 84.5 MB type: 2403 * ?{ trip: { km: ?float32, begin: { lon: ?float64, lat: ?float64 }, end: { lon: ?float64, lat: ?float64 }, path: var * { londiff: float32, latdiff: float32 } } }
Or it could be a single trip.
single_trip = single_taxi.trip[5]
single_trip
{km: 18.6, begin: {lon: -87.9, lat: 42}, end: {lon: -87.7, lat: 42}, path: [{londiff: 0.00768, latdiff: -0.001}, {...}, ..., {londiff: 0.19, ...}]} -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- backend: cpu nbytes: 84.5 MB type: { km: ?float32, begin: { lon: ?float64, lat: ?float64 }, end: { lon: ?float64, lat: ?float64 }, path: var * { londiff: float32, latdiff: float32 } }
Or it could be a single latitude, longitude position along the path.
single_trip.path
[{londiff: 0.00768, latdiff: -0.001}, {londiff: 0.00765, latdiff: -0.00116}, {londiff: 0.00774, latdiff: -0.00154}, {londiff: 0.00757, latdiff: -0.0022}, {londiff: 0.0128, latdiff: -0.0028}, {londiff: 0.0146, latdiff: 0.000311}, {londiff: 0.0184, latdiff: 0.000353}, {londiff: 0.0281, latdiff: -0.00218}, {londiff: 0.0378, latdiff: 0.00184}, {londiff: 0.0464, latdiff: 0.00296}, ..., {londiff: 0.143, latdiff: -0.00576}, {londiff: 0.152, latdiff: -0.00935}, {londiff: 0.16, latdiff: -0.0138}, {londiff: 0.168, latdiff: -0.0179}, {londiff: 0.176, latdiff: -0.0231}, {londiff: 0.181, latdiff: -0.026}, {londiff: 0.182, latdiff: -0.0266}, {londiff: 0.19, latdiff: -0.0266}, {londiff: 0.19, latdiff: -0.0266}] --------------------------------------------------------- backend: cpu nbytes: 208 B type: 26 * { londiff: float32, latdiff: float32 }
single_point = single_trip.path[5]
single_point
{londiff: 0.0146, latdiff: 0.000311} ---------------------------------------------------- backend: cpu nbytes: 208 B type: { londiff: float32, latdiff: float32 }
print(f"longitude: {single_trip.begin.lon + single_point.londiff:.3f}")
print(f"latitude: {single_trip.begin.lat + single_point.latdiff:.3f}")
longitude: -87.899
latitude: 41.981
In Jupyter notebooks (and this documentation), the array contents are presented in a multi-line format with the data type below a dashed line.
Standard Python repr
#
In a Python prompt, the format is more concise:
print(f"{single_taxi!r}")
<Array [{trip: {km: 29.6, ...}}, ..., {...}] type='2403 * ?{trip: {km: ?flo...'>
print(f"{single_trip!r}")
<Record {km: 18.6, begin: {...}, end: ..., ...} type='{km: ?float32, begin:...'>
print(f"{single_point!r}")
<Record {londiff: 0.0146, latdiff: ..., ...} type='{londiff: float32, latdi...'>
The long form can be obtained in a Python prompt with the show
method:
single_taxi.show()
[{trip: {km: 29.6, begin: {lon: -87.9, ...}, end: {...}, path: ..., ...}},
{trip: {km: 2, begin: {lon: -87.6, ...}, end: {...}, path: [...]}},
{trip: {km: 2.46, begin: {lon: -87.6, ...}, end: {...}, path: ..., ...}},
{trip: {km: 50.8, begin: {lon: -87.9, ...}, end: {...}, path: []}},
{trip: {km: 27, begin: {lon: -87.8, ...}, end: {...}, path: [...]}},
{trip: {km: 18.6, begin: {lon: -87.9, ...}, end: {...}, path: ..., ...}},
{trip: {km: 20.2, begin: {lon: -87.9, ...}, end: {...}, path: ..., ...}},
{trip: {km: 2.27, begin: {lon: -87.6, ...}, end: {...}, path: ..., ...}},
{trip: {km: 0.724, begin: {lon: -87.6, ...}, end: {...}, path: ..., ...}},
{trip: {km: 1.05, begin: {lon: -87.6, ...}, end: {...}, path: ..., ...}},
...,
{trip: {km: 2.77, begin: {lon: -87.7, ...}, end: {...}, path: ..., ...}},
{trip: {km: 1.37, begin: {lon: -87.6, ...}, end: {...}, path: ..., ...}},
{trip: {km: 1.74, begin: {lon: -87.6, ...}, end: {...}, path: ..., ...}},
{trip: {km: 0.612, begin: {lon: -87.6, ...}, end: {...}, path: ..., ...}},
{trip: {km: 14.4, begin: {lon: -87.6, ...}, end: {...}, path: ..., ...}},
{trip: {km: 24.1, begin: {lon: -87.9, ...}, end: {...}, path: []}},
{trip: {km: 33.4, begin: {lon: -87.9, ...}, end: {...}, path: []}},
{trip: {km: 24.3, begin: {lon: -87.9, ...}, end: {...}, path: ..., ...}},
{trip: {km: 1.83, begin: {lon: -87.7, ...}, end: {...}, path: ..., ...}}]
single_trip.show()
{km: 18.6,
begin: {lon: -87.9, lat: 42},
end: {lon: -87.7, lat: 42},
path: [{londiff: 0.00768, latdiff: -0.001}, {...}, ..., {londiff: 0.19, ...}]}
single_point.show()
{londiff: 0.0146,
latdiff: 0.000311}
The show
method#
The show
method can take a type=True
argument to include the type as well (at the top this time, because values are presented in the “most valuable real estate,” which is the bottom of a print-out in the terminal, but the top in a Jupyter notebook).
single_point.show(type=True)
type: {
londiff: float32,
latdiff: float32
}{londiff: 0.0146,
latdiff: 0.000311}
Types also have a show
method, so if you only want the type, you can do
single_trip.type.show()
{
km: ?float32,
begin: {
lon: ?float64,
lat: ?float64
},
end: {
lon: ?float64,
lat: ?float64
},
path: var * {
londiff: float32,
latdiff: float32
}
}
If you need to get this as a string or pass it to an output other than sys.stdout
, use the stream
parameter.
single_point.show(stream=None)
'{londiff: 0.0146,\n latdiff: 0.000311}'
Using to_list
and Python’s pprint
for a detailed view#
The repr
and show
representations print into a restricted space: 1 line (80 characters) for repr
, and 20 lines (80 character width) for show
without type=True
. To do this, they replace data with ellipses (...
) until it fits.
You might want to ensure that you see everything. One way to do that is to turn the data into Python objects with ak.to_list()
(or to_list
or tolist
as a method) and pretty-print them with Python’s pprint
.
import pprint
trip_list = ak.to_list(single_trip)
pprint.pprint(trip_list)
{'begin': {'lat': 41.980264315, 'lon': -87.913624596},
'end': {'lat': 41.953582125, 'lon': -87.72345239},
'km': 18.60401725769043,
'path': [{'latdiff': -0.00100231496617198, 'londiff': 0.007684595882892609},
{'latdiff': -0.0011563149746507406, 'londiff': 0.007650596089661121},
{'latdiff': -0.0015393149806186557, 'londiff': 0.00774059584364295},
{'latdiff': -0.002198314992710948, 'londiff': 0.007572595961391926},
{'latdiff': -0.0027953151147812605, 'londiff': 0.012805595993995667},
{'latdiff': 0.0003106849908363074, 'londiff': 0.014558595605194569},
{'latdiff': 0.0003526849905028939, 'londiff': 0.01837259531021118},
{'latdiff': -0.002175315050408244, 'londiff': 0.02808559685945511},
{'latdiff': 0.001839685020968318, 'londiff': 0.03775859624147415},
{'latdiff': 0.002964684972539544, 'londiff': 0.04636159539222717},
{'latdiff': 0.003171684918925166, 'londiff': 0.056837595999240875},
{'latdiff': 0.0036336849443614483, 'londiff': 0.07005459815263748},
{'latdiff': 0.004173684865236282, 'londiff': 0.0837985947728157},
{'latdiff': 0.0029606849420815706, 'londiff': 0.09554759413003922},
{'latdiff': 0.0019616850186139345, 'londiff': 0.1069725975394249},
{'latdiff': 0.002038684906437993, 'londiff': 0.11698559671640396},
{'latdiff': 0.0017906849971041083, 'londiff': 0.12975460290908813},
{'latdiff': -0.005761315114796162, 'londiff': 0.1434255987405777},
{'latdiff': -0.009354314766824245, 'londiff': 0.15160559117794037},
{'latdiff': -0.013837315142154694, 'londiff': 0.16011258959770203},
{'latdiff': -0.01785031519830227, 'londiff': 0.16788259148597717},
{'latdiff': -0.023128315806388855, 'londiff': 0.17631658911705017},
{'latdiff': -0.026048315688967705, 'londiff': 0.18113559484481812},
{'latdiff': -0.026647314429283142, 'londiff': 0.18232059478759766},
{'latdiff': -0.026622315868735313, 'londiff': 0.18967759609222412},
{'latdiff': -0.026618314906954765, 'londiff': 0.19017159938812256}]}
Keep in mind that if you don’t slice a small enough section of data, your terminal or Jupyter notebook may be overwhelmed with output!
Viewing data as JSON#
Another way you can dump everything is to convert the data to JSON with ak.to_json()
.
print(ak.to_json(single_trip))
{"km":18.60401725769043,"begin":{"lon":-87.913624596,"lat":41.980264315},"end":{"lon":-87.72345239,"lat":41.953582125},"path":[{"londiff":0.007684595882892609,"latdiff":-0.00100231496617198},{"londiff":0.007650596089661121,"latdiff":-0.0011563149746507406},{"londiff":0.00774059584364295,"latdiff":-0.0015393149806186557},{"londiff":0.007572595961391926,"latdiff":-0.002198314992710948},{"londiff":0.012805595993995667,"latdiff":-0.0027953151147812605},{"londiff":0.014558595605194569,"latdiff":0.0003106849908363074},{"londiff":0.01837259531021118,"latdiff":0.0003526849905028939},{"londiff":0.02808559685945511,"latdiff":-0.002175315050408244},{"londiff":0.03775859624147415,"latdiff":0.001839685020968318},{"londiff":0.04636159539222717,"latdiff":0.002964684972539544},{"londiff":0.056837595999240875,"latdiff":0.003171684918925166},{"londiff":0.07005459815263748,"latdiff":0.0036336849443614483},{"londiff":0.0837985947728157,"latdiff":0.004173684865236282},{"londiff":0.09554759413003922,"latdiff":0.0029606849420815706},{"londiff":0.1069725975394249,"latdiff":0.0019616850186139345},{"londiff":0.11698559671640396,"latdiff":0.002038684906437993},{"londiff":0.12975460290908813,"latdiff":0.0017906849971041083},{"londiff":0.1434255987405777,"latdiff":-0.005761315114796162},{"londiff":0.15160559117794037,"latdiff":-0.009354314766824245},{"londiff":0.16011258959770203,"latdiff":-0.013837315142154694},{"londiff":0.16788259148597717,"latdiff":-0.01785031519830227},{"londiff":0.17631658911705017,"latdiff":-0.023128315806388855},{"londiff":0.18113559484481812,"latdiff":-0.026048315688967705},{"londiff":0.18232059478759766,"latdiff":-0.026647314429283142},{"londiff":0.18967759609222412,"latdiff":-0.026622315868735313},{"londiff":0.19017159938812256,"latdiff":-0.026618314906954765}]}
That’s not very readable, so we’ll pass num_indent_spaces=4
to add newlines and indentation, and num_readability_spaces=1
to add spaces after commas (,
) and colons (:
).
print(ak.to_json(single_trip, num_indent_spaces=4, num_readability_spaces=1))
{
"km": 18.60401725769043,
"begin": {
"lon": -87.913624596,
"lat": 41.980264315
},
"end": {
"lon": -87.72345239,
"lat": 41.953582125
},
"path": [
{
"londiff": 0.007684595882892609,
"latdiff": -0.00100231496617198
},
{
"londiff": 0.007650596089661121,
"latdiff": -0.0011563149746507406
},
{
"londiff": 0.00774059584364295,
"latdiff": -0.0015393149806186557
},
{
"londiff": 0.007572595961391926,
"latdiff": -0.002198314992710948
},
{
"londiff": 0.012805595993995667,
"latdiff": -0.0027953151147812605
},
{
"londiff": 0.014558595605194569,
"latdiff": 0.0003106849908363074
},
{
"londiff": 0.01837259531021118,
"latdiff": 0.0003526849905028939
},
{
"londiff": 0.02808559685945511,
"latdiff": -0.002175315050408244
},
{
"londiff": 0.03775859624147415,
"latdiff": 0.001839685020968318
},
{
"londiff": 0.04636159539222717,
"latdiff": 0.002964684972539544
},
{
"londiff": 0.056837595999240875,
"latdiff": 0.003171684918925166
},
{
"londiff": 0.07005459815263748,
"latdiff": 0.0036336849443614483
},
{
"londiff": 0.0837985947728157,
"latdiff": 0.004173684865236282
},
{
"londiff": 0.09554759413003922,
"latdiff": 0.0029606849420815706
},
{
"londiff": 0.1069725975394249,
"latdiff": 0.0019616850186139345
},
{
"londiff": 0.11698559671640396,
"latdiff": 0.002038684906437993
},
{
"londiff": 0.12975460290908813,
"latdiff": 0.0017906849971041083
},
{
"londiff": 0.1434255987405777,
"latdiff": -0.005761315114796162
},
{
"londiff": 0.15160559117794037,
"latdiff": -0.009354314766824245
},
{
"londiff": 0.16011258959770203,
"latdiff": -0.013837315142154694
},
{
"londiff": 0.16788259148597717,
"latdiff": -0.01785031519830227
},
{
"londiff": 0.17631658911705017,
"latdiff": -0.023128315806388855
},
{
"londiff": 0.18113559484481812,
"latdiff": -0.026048315688967705
},
{
"londiff": 0.18232059478759766,
"latdiff": -0.026647314429283142
},
{
"londiff": 0.18967759609222412,
"latdiff": -0.026622315868735313
},
{
"londiff": 0.19017159938812256,
"latdiff": -0.026618314906954765
}
]
}
ak.to_json()
is also one of the bulk output methods, so it can write data to a file, as a single JSON object or as line_delimited
JSON.