How to create arrays of strings#

Awkward Arrays can contain strings, although these strings are just a special view of lists of uint8 numbers. As such, the variable-length data are efficiently stored.

NumPy’s strings are padded to have equal width, and Pandas’s strings are Python objects. Awkward Array doesn’t have nearly as many functions for manipulating arrays of strings as NumPy and Pandas, though.

import awkward as ak
import numpy as np

From Python strings#

The ak.Array constructor and ak.from_iter() recognize strings, and strings are returned by ak.to_list().

ak.Array(["one", "two", "three"])
['one',
 'two',
 'three']
----------------
type: 3 * string

They may be nested within anything.

ak.Array([["one", "two"], [], ["three"]])
[['one', 'two'],
 [],
 ['three']]
----------------------
type: 3 * var * string

From NumPy arrays#

NumPy strings are also recognized by ak.from_numpy() and ak.to_numpy().

numpy_array = np.array(["one", "two", "three", "four"])
numpy_array
array(['one', 'two', 'three', 'four'], dtype='<U5')
awkward_array = ak.Array(numpy_array)
awkward_array
['one',
 'two',
 'three',
 'four']
----------------
type: 4 * string

Operations with strings#

Since strings are really just lists, some of the list operations “just work” on strings.

ak.num(awkward_array)
[3,
 3,
 5,
 4]
---------------
type: 4 * int64
awkward_array[:, 1:]
['ne',
 'wo',
 'hree',
 'our']
----------------
type: 4 * string

Others had to be specially overloaded for the string case, such as string-equality. The default meaning for == would be to descend to the lowest level and compare numbers (characters, in this case).

awkward_array == "three"
[False,
 False,
 True,
 False]
--------------
type: 4 * bool
awkward_array == ak.Array(["ONE", "TWO", "three", "four"])
[False,
 False,
 True,
 True]
--------------
type: 4 * bool

Similarly, ak.sort() and ak.argsort() sort strings lexicographically, not individual characters.

ak.sort(awkward_array)
['four',
 'one',
 'three',
 'two']
----------------
type: 4 * string

Still other operations had to be inhibited, since they wouldn’t make sense for strings.

np.sqrt(awkward_array)
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Cell In[11], line 1
----> 1 np.sqrt(awkward_array)

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/highlevel.py:1593, in Array.__array_ufunc__(self, ufunc, method, *inputs, **kwargs)
   1528 """
   1529 Intercepts attempts to pass this Array to a NumPy
   1530 [universal functions](https://docs.scipy.org/doc/numpy/reference/ufuncs.html)
   (...)
   1590 See also #__array_function__.
   1591 """
   1592 name = f"{type(ufunc).__module__}.{ufunc.__name__}.{method!s}"
-> 1593 with ak._errors.OperationErrorContext(name, inputs, kwargs):
   1594     return ak._connect.numpy.array_ufunc(ufunc, method, inputs, kwargs)

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_errors.py:80, in ErrorContext.__exit__(self, exception_type, exception_value, traceback)
     78     self._slate.__dict__.clear()
     79     # Handle caught exception
---> 80     raise self.decorate_exception(exception_type, exception_value)
     81 else:
     82     # Step out of the way so that another ErrorContext can become primary.
     83     if self.primary() is self:

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/highlevel.py:1594, in Array.__array_ufunc__(self, ufunc, method, *inputs, **kwargs)
   1592 name = f"{type(ufunc).__module__}.{ufunc.__name__}.{method!s}"
   1593 with ak._errors.OperationErrorContext(name, inputs, kwargs):
-> 1594     return ak._connect.numpy.array_ufunc(ufunc, method, inputs, kwargs)

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_connect/numpy.py:469, in array_ufunc(ufunc, method, inputs, kwargs)
    461         raise TypeError(
    462             "no {}.{} overloads for custom types: {}".format(
    463                 type(ufunc).__module__, ufunc.__name__, ", ".join(error_message)
    464             )
    465         )
    467     return None
--> 469 out = ak._broadcasting.broadcast_and_apply(
    470     inputs,
    471     action,
    472     depth_context=depth_context,
    473     lateral_context=lateral_context,
    474     allow_records=False,
    475     function_name=ufunc.__name__,
    476 )
    478 out_named_axis = functools.reduce(
    479     _unify_named_axis, lateral_context[NAMED_AXIS_KEY].named_axis
    480 )
    481 if len(out) == 1:

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:1200, in broadcast_and_apply(inputs, action, depth_context, lateral_context, allow_records, left_broadcast, right_broadcast, numpy_to_regular, regular_to_jagged, function_name, broadcast_parameters_rule)
   1198 backend = backend_of(*inputs, coerce_to_common=False)
   1199 isscalar = []
-> 1200 out = apply_step(
   1201     backend,
   1202     broadcast_pack(inputs, isscalar),
   1203     action,
   1204     0,
   1205     depth_context,
   1206     lateral_context,
   1207     {
   1208         "allow_records": allow_records,
   1209         "left_broadcast": left_broadcast,
   1210         "right_broadcast": right_broadcast,
   1211         "numpy_to_regular": numpy_to_regular,
   1212         "regular_to_jagged": regular_to_jagged,
   1213         "function_name": function_name,
   1214         "broadcast_parameters_rule": broadcast_parameters_rule,
   1215     },
   1216 )
   1217 assert isinstance(out, tuple)
   1218 return tuple(broadcast_unpack(x, isscalar) for x in out)

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:1178, in apply_step(backend, inputs, action, depth, depth_context, lateral_context, options)
   1176     return result
   1177 elif result is None:
-> 1178     return continuation()
   1179 else:
   1180     raise AssertionError(result)

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:1147, in apply_step.<locals>.continuation()
   1145 # Any non-string list-types?
   1146 elif any(x.is_list and not is_string_like(x) for x in contents):
-> 1147     return broadcast_any_list()
   1149 # Any RecordArrays?
   1150 elif any(x.is_record for x in contents):

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:671, in apply_step.<locals>.broadcast_any_list()
    668         nextinputs.append(x)
    669         nextparameters.append(NO_PARAMETERS)
--> 671 outcontent = apply_step(
    672     backend,
    673     nextinputs,
    674     action,
    675     depth + 1,
    676     copy.copy(depth_context),
    677     lateral_context,
    678     options,
    679 )
    680 assert isinstance(outcontent, tuple)
    681 parameters = parameters_factory(nextparameters, len(outcontent))

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:1160, in apply_step(backend, inputs, action, depth, depth_context, lateral_context, options)
   1153     else:
   1154         raise ValueError(
   1155             "cannot broadcast: {}{}".format(
   1156                 ", ".join(repr(type(x)) for x in inputs), in_function(options)
   1157             )
   1158         )
-> 1160 result = action(
   1161     inputs,
   1162     depth=depth,
   1163     depth_context=depth_context,
   1164     lateral_context=lateral_context,
   1165     continuation=continuation,
   1166     backend=backend,
   1167     options=options,
   1168 )
   1170 if isinstance(result, tuple) and all(isinstance(x, Content) for x in result):
   1171     if any(content.backend is not backend for content in result):

File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_connect/numpy.py:405, in array_ufunc.<locals>.action(inputs, **ignore)
    400     # Do we have all-strings? If so, we can't proceed
    401     if all(
    402         x.is_list and x.parameter("__array__") in ("string", "bytestring")
    403         for x in contents
    404     ):
--> 405         raise TypeError(
    406             f"{type(ufunc).__module__}.{ufunc.__name__} is not implemented for string types. "
    407             "To register an implementation, add a name to these string(s) and register a behavior overload"
    408         )
    410 if ufunc is numpy.matmul:
    411     raise NotImplementedError(
    412         "matrix multiplication (`@` or `np.matmul`) is not yet implemented for Awkward Arrays"
    413     )

TypeError: numpy.sqrt is not implemented for string types. To register an implementation, add a name to these string(s) and register a behavior overload

This error occurred while calling

    numpy.sqrt.__call__(
        <Array ['one', 'two', 'three', 'four'] type='4 * string'>
    )

Categorical strings#

A large set of strings with few unique values are more efficiently manipulated as integers than as strings. In Pandas, this is categorical data, in R, it’s called a factor, and in Arrow and Parquet, it’s dictionary encoding.

The ak.str.to_categorical() (requires PyArrow) function makes Awkward Arrays categorical in this sense. ak.to_arrow() and ak.to_parquet() recognize categorical data and convert it to the corresponding Arrow and Parquet types.

uncategorized = ak.Array(["three", "one", "two", "two", "three", "one", "one", "one"])
uncategorized
['three',
 'one',
 'two',
 'two',
 'three',
 'one',
 'one',
 'one']
----------------
type: 8 * string
categorized = ak.str.to_categorical(uncategorized)
categorized
['three',
 'one',
 'two',
 'two',
 'three',
 'one',
 'one',
 'one']
----------------------------------
type: 8 * categorical[type=string]

Internally, the data now have an index that selects from a set of unique strings.

categorized.layout.index
<Index dtype='int64' len='8'>[0 1 2 2 0 1 1 1]</Index>
ak.Array(categorized.layout.content)
['three',
 'one',
 'two']
----------------
type: 3 * string

The main advantage to Awkward categorical data (other than proper conversions to Arrow and Parquet) is that equality is performed using the index integers.

categorized == "one"
[False,
 True,
 False,
 False,
 False,
 True,
 True,
 True]
--------------
type: 8 * bool

With ArrayBuilder#

ak.ArrayBuilder() is described in more detail in this tutorial, but you can add strings by calling the string method or simply appending them.

(This is what ak.from_iter() uses internally to accumulate data.)

builder = ak.ArrayBuilder()

builder.string("one")
builder.append("two")
builder.append("three")

array = builder.snapshot()
array
['one',
 'two',
 'three']
----------------
type: 3 * string