How to convert to Pandas#
Pandas is a data analysis library for ordered time-series and relational data. In general, Pandas does not define operations for manipulating nested data structures, but in some cases, MultiIndex/advanced indexing can do equivalent things.
import awkward as ak
import pandas as pd
import pyarrow as pa
import urllib.request
From Pandas to Awkward#
At the time of writing, there is no ak.from_dataframe
function, but such a thing could be useful.
However, Apache Arrow can be converted to and from Awkward Arrays, and Arrow can be converted to and from Pandas (sometimes zero-copy). See below for more on conversion through Arrow.
From Awkward to Pandas#
The function for Awkward → Pandas conversion is ak.to_dataframe()
.
ak_array = ak.Array(
[
{"x": 1.1, "y": 1, "z": "one"},
{"x": 2.2, "y": 2, "z": "two"},
{"x": 3.3, "y": 3, "z": "three"},
{"x": 4.4, "y": 4, "z": "four"},
{"x": 5.5, "y": 5, "z": "five"},
]
)
ak_array
[{x: 1.1, y: 1, z: 'one'}, {x: 2.2, y: 2, z: 'two'}, {x: 3.3, y: 3, z: 'three'}, {x: 4.4, y: 4, z: 'four'}, {x: 5.5, y: 5, z: 'five'}] --------------------------------------------------------- backend: cpu nbytes: 147 B type: 5 * { x: float64, y: int64, z: string }
ak.to_dataframe(ak_array)
x | y | z | |
---|---|---|---|
entry | |||
0 | 1.1 | 1 | one |
1 | 2.2 | 2 | two |
2 | 3.3 | 3 | three |
3 | 4.4 | 4 | four |
4 | 5.5 | 5 | five |
Awkward record field names are converted into Pandas column names, even if nested within lists.
ak_array = ak.Array(
[
[
{"x": 1.1, "y": 1, "z": "one"},
{"x": 2.2, "y": 2, "z": "two"},
{"x": 3.3, "y": 3, "z": "three"},
],
[],
[{"x": 4.4, "y": 4, "z": "four"}, {"x": 5.5, "y": 5, "z": "five"}],
]
)
ak_array
[[{x: 1.1, y: 1, z: 'one'}, {x: 2.2, ...}, {x: 3.3, y: 3, z: 'three'}], [], [{x: 4.4, y: 4, z: 'four'}, {x: 5.5, y: 5, z: 'five'}]] ----------------------------------------------------------------------- backend: cpu nbytes: 179 B type: 3 * var * { x: float64, y: int64, z: string }
ak.to_dataframe(ak_array)
x | y | z | ||
---|---|---|---|---|
entry | subentry | |||
0 | 0 | 1.1 | 1 | one |
1 | 2.2 | 2 | two | |
2 | 3.3 | 3 | three | |
2 | 0 | 4.4 | 4 | four |
1 | 5.5 | 5 | five |
In this case, we see that the "x"
, "y"
, and "z"
fields are separate columns, but also that the index is now hierarchical, a MultiIndex. Nested lists become MultiIndex rows and nested records become MultiIndex columns.
Here is an example with three levels of depth:
ak_array = ak.Array(
[
[[1.1, 2.2], [], [3.3]],
[],
[[4.4], [5.5, 6.6]],
[[7.7]],
[[8.8]],
]
)
ak_array
[[[1.1, 2.2], [], [3.3]], [], [[4.4], [5.5, 6.6]], [[7.7]], [[8.8]]] ----------------------------- backend: cpu nbytes: 176 B type: 5 * var * var * float64
ak.to_dataframe(ak_array)
values | |||
---|---|---|---|
entry | subentry | subsubentry | |
0 | 0 | 0 | 1.1 |
1 | 2.2 | ||
2 | 0 | 3.3 | |
2 | 0 | 0 | 4.4 |
1 | 0 | 5.5 | |
1 | 6.6 | ||
3 | 0 | 0 | 7.7 |
4 | 0 | 0 | 8.8 |
And here is an example with nested records/hierarchical columns:
ak_array = ak.Array(
[
{"I": {"a": _, "b": {"i": _}}, "II": {"x": {"y": {"z": _}}}}
for _ in range(0, 50, 10)
]
)
ak_array
[{I: {a: 0, b: {...}}, II: {x: {y: ..., ...}}}, {I: {a: 10, b: {...}}, II: {x: {y: ..., ...}}}, {I: {a: 20, b: {...}}, II: {x: {y: ..., ...}}}, {I: {a: 30, b: {...}}, II: {x: {y: ..., ...}}}, {I: {a: 40, b: {...}}, II: {x: {y: ..., ...}}}] ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ backend: cpu nbytes: 120 B type: 5 * { I: { a: int64, b: { i: int64 } }, II: { x: { y: { z: int64 } } } }
ak.to_dataframe(ak_array)
I | II | ||
---|---|---|---|
a | b | x | |
i | y | ||
z | |||
entry | |||
0 | 0 | 0 | 0 |
1 | 10 | 10 | 10 |
2 | 20 | 20 | 20 |
3 | 30 | 30 | 30 |
4 | 40 | 40 | 40 |
Although nested lists and records can be represented using Pandas’s MultiIndex, different-length lists in the same data structure can only be translated without loss into multiple DataFrames. This is because a DataFrame can have only one MultiIndex, but lists of different lengths require different MultiIndexes.
ak_array = ak.Array(
[
{"x": [], "y": [4.4, 3.3, 2.2, 1.1]},
{"x": [1], "y": [3.3, 2.2, 1.1]},
{"x": [1, 2], "y": [2.2, 1.1]},
{"x": [1, 2, 3], "y": [1.1]},
{"x": [1, 2, 3, 4], "y": []},
]
)
ak_array
[{x: [], y: [4.4, 3.3, 2.2, 1.1]}, {x: [1], y: [3.3, 2.2, 1.1]}, {x: [1, 2], y: [2.2, 1.1]}, {x: [1, 2, 3], y: [1.1]}, {x: [1, 2, 3, 4], y: []}] ------------------------------------------------------ backend: cpu nbytes: 256 B type: 5 * { x: var * int64, y: var * float64 }
To avoid losing any data, ak.to_dataframe()
can be used with how=None
(the default is how="inner"
) to return a list of the minimum number of DataFrames needed to encode the data.
In how=None
mode, ak.to_dataframe()
always returns a list (sometimes with only one item).
ak.to_dataframe(ak_array, how=None)
[ x
entry subentry
1 0 1
2 0 1
1 2
3 0 1
1 2
2 3
4 0 1
1 2
2 3
3 4,
y
entry subentry
0 0 4.4
1 3.3
2 2.2
3 1.1
1 0 3.3
1 2.2
2 1.1
2 0 2.2
1 1.1
3 0 1.1]
The default how="inner"
combines the above into a single DataFrame using pd.merge. This operation is lossy.
ak.to_dataframe(ak_array, how="inner")
x | y | ||
---|---|---|---|
entry | subentry | ||
1 | 0 | 1 | 3.3 |
2 | 0 | 1 | 2.2 |
1 | 2 | 1.1 | |
3 | 0 | 1 | 1.1 |
The value of how
is passed to pd.merge, so outer joins are possible as well.
ak.to_dataframe(ak_array, how="outer")
x | y | ||
---|---|---|---|
entry | subentry | ||
0 | 0 | NaN | 4.4 |
1 | NaN | 3.3 | |
2 | NaN | 2.2 | |
3 | NaN | 1.1 | |
1 | 0 | 1.0 | 3.3 |
1 | NaN | 2.2 | |
2 | NaN | 1.1 | |
2 | 0 | 1.0 | 2.2 |
1 | 2.0 | 1.1 | |
3 | 0 | 1.0 | 1.1 |
1 | 2.0 | NaN | |
2 | 3.0 | NaN | |
4 | 0 | 1.0 | NaN |
1 | 2.0 | NaN | |
2 | 3.0 | NaN | |
3 | 4.0 | NaN |
Conversion through Apache Arrow#
Since Apache Arrow can be converted to and from Awkward Arrays and Pandas, Arrow can connect Awkward and Pandas in both directions. This is an alternative to ak.to_pandas()
(described above) with different behavior.
As described in the tutorial on Arrow, the ak.to_arrow()
function returns a pyarrow.lib.Arrow
object. Arrow’s conversion to Pandas requires a pyarrow.lib.Table
.
ak_array = ak.Array(
[
[
{"x": 1.1, "y": 1, "z": "one"},
{"x": 2.2, "y": 2, "z": "two"},
{"x": 3.3, "y": 3, "z": "three"},
],
[],
[{"x": 4.4, "y": 4, "z": "four"}, {"x": 5.5, "y": 5, "z": "five"}],
]
)
ak_array
[[{x: 1.1, y: 1, z: 'one'}, {x: 2.2, ...}, {x: 3.3, y: 3, z: 'three'}], [], [{x: 4.4, y: 4, z: 'four'}, {x: 5.5, y: 5, z: 'five'}]] ----------------------------------------------------------------------- backend: cpu nbytes: 179 B type: 3 * var * { x: float64, y: int64, z: string }
pa_array = ak.to_arrow(ak_array)
pa_array
<awkward._connect.pyarrow.extn_types.AwkwardArrowArray object at 0x7f55493b4980>
[
-- is_valid: all not null
-- child 0 type: extension<awkward<AwkwardArrowType>>
[
1.1,
2.2,
3.3
]
-- child 1 type: extension<awkward<AwkwardArrowType>>
[
1,
2,
3
]
-- child 2 type: extension<awkward<AwkwardArrowType>>
[
"one",
"two",
"three"
],
-- is_valid: all not null
-- child 0 type: extension<awkward<AwkwardArrowType>>
[]
-- child 1 type: extension<awkward<AwkwardArrowType>>
[]
-- child 2 type: extension<awkward<AwkwardArrowType>>
[],
-- is_valid: all not null
-- child 0 type: extension<awkward<AwkwardArrowType>>
[
4.4,
5.5
]
-- child 1 type: extension<awkward<AwkwardArrowType>>
[
4,
5
]
-- child 2 type: extension<awkward<AwkwardArrowType>>
[
"four",
"five"
]
]
We can build a Table manually, ensuring that we set extensionarray=False
. The extensionarray
flag is normally True
, and enables Awkward to preserve metadata through Arrow transformations. However, tools like Arrow’s Pandas conversion do not recognise Awkward’s special extension type, so we must take care to provide Arrow with native types:
pa_table = pa.Table.from_batches(
[
pa.RecordBatch.from_arrays(
[
ak.to_arrow(ak_array.x, extensionarray=False),
ak.to_arrow(ak_array.y, extensionarray=False),
ak.to_arrow(ak_array.z, extensionarray=False),
],
["x", "y", "z"],
)
]
)
pa_table
pyarrow.Table
x: large_list<item: double not null>
child 0, item: double not null
y: large_list<item: int64 not null>
child 0, item: int64 not null
z: large_list<item: large_string not null>
child 0, item: large_string not null
----
x: [[[1.1,2.2,3.3],[],[4.4,5.5]]]
y: [[[1,2,3],[],[4,5]]]
z: [[["one","two","three"],[],["four","five"]]]
pa_table.to_pandas()
x | y | z | |
---|---|---|---|
0 | [1.1, 2.2, 3.3] | [1, 2, 3] | [one, two, three] |
1 | [] | [] | [] |
2 | [4.4, 5.5] | [4, 5] | [four, five] |
Note that this is different from the output of ak.to_pandas()
:
ak.to_dataframe(ak_array)
x | y | z | ||
---|---|---|---|---|
entry | subentry | |||
0 | 0 | 1.1 | 1 | one |
1 | 2.2 | 2 | two | |
2 | 3.3 | 3 | three | |
2 | 0 | 4.4 | 4 | four |
1 | 5.5 | 5 | five |
The Awkward → Arrow → Pandas route leaves the lists as nested data within each cell, whereas ak.to_dataframe()
encodes the nested structure with a MultiIndex/advanced indexing and puts simple values in each cell. Depending on your needs, one or the other may be desirable.
Finally, the Pandas → Arrow → Awkward is currently the only means of turning Pandas DataFrames into Awkward Arrays.
pokemon = urllib.request.urlopen(
"https://gist.githubusercontent.com/armgilles/194bcff35001e7eb53a2a8b441e8b2c6/raw/92200bc0a673d5ce2110aaad4544ed6c4010f687/pokemon.csv"
)
df = pd.read_csv(pokemon)
df
# | Name | Type 1 | Type 2 | Total | HP | Attack | Defense | Sp. Atk | Sp. Def | Speed | Generation | Legendary | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | Bulbasaur | Grass | Poison | 318 | 45 | 49 | 49 | 65 | 65 | 45 | 1 | False |
1 | 2 | Ivysaur | Grass | Poison | 405 | 60 | 62 | 63 | 80 | 80 | 60 | 1 | False |
2 | 3 | Venusaur | Grass | Poison | 525 | 80 | 82 | 83 | 100 | 100 | 80 | 1 | False |
3 | 3 | VenusaurMega Venusaur | Grass | Poison | 625 | 80 | 100 | 123 | 122 | 120 | 80 | 1 | False |
4 | 4 | Charmander | Fire | NaN | 309 | 39 | 52 | 43 | 60 | 50 | 65 | 1 | False |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
795 | 719 | Diancie | Rock | Fairy | 600 | 50 | 100 | 150 | 100 | 150 | 50 | 6 | True |
796 | 719 | DiancieMega Diancie | Rock | Fairy | 700 | 50 | 160 | 110 | 160 | 110 | 110 | 6 | True |
797 | 720 | HoopaHoopa Confined | Psychic | Ghost | 600 | 80 | 110 | 60 | 150 | 130 | 70 | 6 | True |
798 | 720 | HoopaHoopa Unbound | Psychic | Dark | 680 | 80 | 160 | 60 | 170 | 130 | 80 | 6 | True |
799 | 721 | Volcanion | Fire | Water | 600 | 80 | 110 | 120 | 130 | 90 | 70 | 6 | True |
800 rows × 13 columns
ak_array = ak.from_arrow(pa.Table.from_pandas(df))
ak_array
[{'#': 1, Name: 'Bulbasaur', 'Type 1': 'Grass', 'Type 2': 'Poison', ...}, {'#': 2, Name: 'Ivysaur', 'Type 1': 'Grass', 'Type 2': 'Poison', ...}, {'#': 3, Name: 'Venusaur', 'Type 1': 'Grass', 'Type 2': 'Poison', ...}, {'#': 3, Name: 'VenusaurMega Venusaur', 'Type 1': 'Grass', 'Type 2': ..., ...}, {'#': 4, Name: 'Charmander', 'Type 1': 'Fire', 'Type 2': None, ...}, {'#': 5, Name: 'Charmeleon', 'Type 1': 'Fire', 'Type 2': None, ...}, {'#': 6, Name: 'Charizard', 'Type 1': 'Fire', 'Type 2': 'Flying', ...}, {'#': 6, Name: 'CharizardMega Charizard X', 'Type 1': 'Fire', ...}, {'#': 6, Name: 'CharizardMega Charizard Y', 'Type 1': 'Fire', ...}, {'#': 7, Name: 'Squirtle', 'Type 1': 'Water', 'Type 2': None, Total: 314, ...}, ..., {'#': 715, Name: 'Noivern', 'Type 1': 'Flying', 'Type 2': 'Dragon', ...}, {'#': 716, Name: 'Xerneas', 'Type 1': 'Fairy', 'Type 2': None, ...}, {'#': 717, Name: 'Yveltal', 'Type 1': 'Dark', 'Type 2': 'Flying', ...}, {'#': 718, Name: 'Zygarde50% Forme', 'Type 1': 'Dragon', 'Type 2': ..., ...}, {'#': 719, Name: 'Diancie', 'Type 1': 'Rock', 'Type 2': 'Fairy', ...}, {'#': 719, Name: 'DiancieMega Diancie', 'Type 1': 'Rock', 'Type 2': ..., ...}, {'#': 720, Name: 'HoopaHoopa Confined', 'Type 1': 'Psychic', ...}, {'#': 720, Name: 'HoopaHoopa Unbound', 'Type 1': 'Psychic', ...}, {'#': 721, Name: 'Volcanion', 'Type 1': 'Fire', 'Type 2': 'Water', ...}] ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- backend: cpu nbytes: 81.7 kB type: 800 * { "#": ?int64, Name: ?string, "Type 1": ?string, "Type 2": ?string, Total: ?int64, HP: ?int64, Attack: ?int64, Defense: ?int64, "Sp. Atk": ?int64, "Sp. Def": ?int64, Speed: ?int64, Generation: ?int64, Legendary: ?bool }
ak.type(ak_array)
ArrayType(RecordType([OptionType(NumpyType('int64')), OptionType(ListType(NumpyType('uint8', parameters={'__array__': 'char'}), parameters={'__array__': 'string'})), OptionType(ListType(NumpyType('uint8', parameters={'__array__': 'char'}), parameters={'__array__': 'string'})), OptionType(ListType(NumpyType('uint8', parameters={'__array__': 'char'}), parameters={'__array__': 'string'})), OptionType(NumpyType('int64')), OptionType(NumpyType('int64')), OptionType(NumpyType('int64')), OptionType(NumpyType('int64')), OptionType(NumpyType('int64')), OptionType(NumpyType('int64')), OptionType(NumpyType('int64')), OptionType(NumpyType('int64')), OptionType(NumpyType('bool'))], ['#', 'Name', 'Type 1', 'Type 2', 'Total', 'HP', 'Attack', 'Defense', 'Sp. Atk', 'Sp. Def', 'Speed', 'Generation', 'Legendary']), 800, None)
ak.to_list(ak_array[0])
{'#': 1,
'Name': 'Bulbasaur',
'Type 1': 'Grass',
'Type 2': 'Poison',
'Total': 318,
'HP': 45,
'Attack': 49,
'Defense': 49,
'Sp. Atk': 65,
'Sp. Def': 65,
'Speed': 45,
'Generation': 1,
'Legendary': False}
This array is ready for data analysis.
ak_array[ak_array.Legendary].Attack - ak_array[ak_array.Legendary].Defense
[-15, 5, 10, 20, 90, 80, 10, 30, -40, -40, ..., 30, 36, 36, -21, -50, 50, 50, 100, -10] ----------------- backend: cpu nbytes: 1.0 kB type: 65 * ?int64