How Awkward broadcasting works#
Functions that accept more than one array argument need to combine the elements of their array elements somehow, particularly if the input arrays have different numbers of dimensions. That combination is called “broadcasting.” Broadcasting in Awkward Array is very similar to NumPy broadcasting, with some minor differences described at the end of this section.
import awkward as ak
import numpy as np
Broadcasting in mathematical functions#
Any function that takes more than one array argument has to broadcast them together; a common case of that is in binary operators of a mathematical expression:
array1 = ak.Array([[1, 2, 3], [], [4, 5]])
array2 = ak.Array([10, 20, 30])
array1 + array2
[[11, 12, 13], [], [34, 35]] --------------------- backend: cpu nbytes: 72 B type: 3 * var * int64
The single 10
in array2
is added to every element of [1, 2, 3]
in array1
, and the single 30
is added to every element of [4, 5]
. The single 20
in array2
is not added to anything in array1
because the corresponding list is empty.
For broadcasting to be successful, the arrays need to have the same length in all dimensions except the one being broadcasted; array1
and array2
both had to be length 3 in the example above. That’s why this example fails:
array1 = ak.Array([[1, 2, 3], [4, 5]])
array2 = ak.Array([10, 20, 30])
array1 + array2
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[3], line 4
1 array1 = ak.Array([[1, 2, 3], [4, 5]])
2 array2 = ak.Array([10, 20, 30])
----> 4 array1 + array2
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_operators.py:54, in _binary_method.<locals>.func(self, other)
51 if _disables_array_ufunc(other):
52 return NotImplemented
---> 54 return ufunc(self, other)
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/highlevel.py:1616, in Array.__array_ufunc__(self, ufunc, method, *inputs, **kwargs)
1551 """
1552 Intercepts attempts to pass this Array to a NumPy
1553 [universal functions](https://docs.scipy.org/doc/numpy/reference/ufuncs.html)
(...)
1613 See also #__array_function__.
1614 """
1615 name = f"{type(ufunc).__module__}.{ufunc.__name__}.{method!s}"
-> 1616 with ak._errors.OperationErrorContext(name, inputs, kwargs):
1617 return ak._connect.numpy.array_ufunc(ufunc, method, inputs, kwargs)
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_errors.py:80, in ErrorContext.__exit__(self, exception_type, exception_value, traceback)
78 self._slate.__dict__.clear()
79 # Handle caught exception
---> 80 raise self.decorate_exception(exception_type, exception_value)
81 else:
82 # Step out of the way so that another ErrorContext can become primary.
83 if self.primary() is self:
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/highlevel.py:1617, in Array.__array_ufunc__(self, ufunc, method, *inputs, **kwargs)
1615 name = f"{type(ufunc).__module__}.{ufunc.__name__}.{method!s}"
1616 with ak._errors.OperationErrorContext(name, inputs, kwargs):
-> 1617 return ak._connect.numpy.array_ufunc(ufunc, method, inputs, kwargs)
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_connect/numpy.py:469, in array_ufunc(ufunc, method, inputs, kwargs)
461 raise TypeError(
462 "no {}.{} overloads for custom types: {}".format(
463 type(ufunc).__module__, ufunc.__name__, ", ".join(error_message)
464 )
465 )
467 return None
--> 469 out = ak._broadcasting.broadcast_and_apply(
470 inputs,
471 action,
472 depth_context=depth_context,
473 lateral_context=lateral_context,
474 allow_records=False,
475 function_name=ufunc.__name__,
476 )
478 out_named_axis = functools.reduce(
479 _unify_named_axis, lateral_context[NAMED_AXIS_KEY].named_axis
480 )
481 if len(out) == 1:
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:1200, in broadcast_and_apply(inputs, action, depth_context, lateral_context, allow_records, left_broadcast, right_broadcast, numpy_to_regular, regular_to_jagged, function_name, broadcast_parameters_rule)
1198 backend = backend_of(*inputs, coerce_to_common=False)
1199 isscalar = []
-> 1200 out = apply_step(
1201 backend,
1202 broadcast_pack(inputs, isscalar),
1203 action,
1204 0,
1205 depth_context,
1206 lateral_context,
1207 {
1208 "allow_records": allow_records,
1209 "left_broadcast": left_broadcast,
1210 "right_broadcast": right_broadcast,
1211 "numpy_to_regular": numpy_to_regular,
1212 "regular_to_jagged": regular_to_jagged,
1213 "function_name": function_name,
1214 "broadcast_parameters_rule": broadcast_parameters_rule,
1215 },
1216 )
1217 assert isinstance(out, tuple)
1218 return tuple(broadcast_unpack(x, isscalar) for x in out)
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:1178, in apply_step(backend, inputs, action, depth, depth_context, lateral_context, options)
1176 return result
1177 elif result is None:
-> 1178 return continuation()
1179 else:
1180 raise AssertionError(result)
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:1147, in apply_step.<locals>.continuation()
1145 # Any non-string list-types?
1146 elif any(x.is_list and not is_string_like(x) for x in contents):
-> 1147 return broadcast_any_list()
1149 # Any RecordArrays?
1150 elif any(x.is_record for x in contents):
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:659, in apply_step.<locals>.broadcast_any_list()
657 nextparameters.append(x._parameters)
658 else:
--> 659 raise ValueError(
660 "cannot broadcast RegularArray of size "
661 f"{x.size} with RegularArray of size {dim_size}{in_function(options)}"
662 )
663 else:
664 nextinputs.append(x)
ValueError: cannot broadcast RegularArray of size 2 with RegularArray of size 3 in add
This error occurred while calling
numpy.add.__call__(
<Array [[1, 2, 3], [4, 5]] type='2 * var * int64'>
<Array [10, 20, 30] type='3 * int64'>
)
The same applies to functions of multiple arguments that aren’t associated with any binary operator:
array1 = ak.Array([[True, False, True], [], [False, True]])
array2 = ak.Array([True, True, False])
np.logical_and(array1, array2)
[[True, False, True], [], [False, False]] --------------------- backend: cpu nbytes: 37 B type: 3 * var * bool
And functions that aren’t universal functions (ufuncs):
array1 = ak.Array([[1, 2, 3], [], [4, 5]])
array2 = ak.Array([10, 20, 30])
np.where(array1 % 2 == 0, array1, array2)
[[10, 2, 10], [], [4, 30]] --------------------- backend: cpu nbytes: 72 B type: 3 * var * int64
Using ak.broadcast_arrays
#
Sometimes, you may want to broadcast arrays to a common shape without performing an additional operation. The ak.broadcast_arrays()
function allows you to do this:
array1 = ak.Array([[1, 2, 3], [], [4, 5]])
array2 = ak.Array([10, 20, 30])
ak.broadcast_arrays(array1, array2)
[<Array [[1, 2, 3], [], [4, 5]] type='3 * var * int64'>,
<Array [[10, 10, 10], [], [30, 30]] type='3 * var * int64'>]
This code would align array1
and array2
into compatible shapes that can be used in subsequent operations, effectively showing how each element corresponds between the two original arrays.
Missing data, heterogeneous data, and records#
One of the ways Awkward Arrays extend beyond NumPy is by allowing the use of None
for missing data. These None
values are broadcasted like empty lists:
array1 = ak.Array([[1, 2, 3], None, [4, 5]])
array2 = ak.Array([10, 20, 30])
array1 + array2
[[11, 12, 13], None, [34, 35]] ----------------------------- backend: cpu nbytes: 88 B type: 3 * option[var * int64]
Another difference from NumPy is that Awkward Arrays can contain data of mixed type, such as different numbers of dimensions. If numerical values can be matched across such arrays, they are:
array1 = ak.Array([[1, 2, 3], 4, 5])
array2 = ak.Array([10, 20, 30])
array1 + array2
[[11, 12, 13], 24, 35] --------------------------------------------- backend: cpu nbytes: 83 B type: 3 * union[ var * int64, int64 ]
Arrays containing records can also be broadcasted, though most mathematical operations cannot be applied to records. Here is an example using ak.broadcast_arrays()
.
array1 = ak.Array([
[{"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}],
[],
[{"x": 4.4, "y": [1, 2, 3, 4]}, {"x": 5.5, "y": [1, 2, 3, 4, 5]}],
])
array2 = ak.Array([10, 20, 30])
ak.broadcast_arrays(array1, array2)
[<Array [[{x: 1.1, y: [1]}, ..., {...}], ...] type='3 * var * {x: float64, y...'>,
<Array [[10, 10, 10], [], [30, 30]] type='3 * var * int64'>]
Differences from NumPy broadcasting#
Awkward Array broadcasting is identical to NumPy broadcasting in three respects:
arrays with the same number of dimensions must match lengths (except for length 1) exactly,
length-1 dimensions expand like scalars (one to many),
for arrays with different numbers of dimensions, the smaller number of dimensions is expanded to match the largest number of dimensions.
Awkward Arrays with fixed-length dimensions—not “variable-length” or “ragged”—broadcast exactly like NumPy.
Awkward Arrays with ragged dimensions expand the smaller number of dimensions on the left, whereas NumPy and Awkward-with-fixed-length expand the smaller number of dimensions on the right, when implementing point 3 above. This is the only difference.
Here’s a demonstration of NumPy broadcasting:
x = np.array([
[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12],
])
y = np.array([
[[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]],
[[100, 200, 300, 400], [500, 600, 700, 800], [900, 1000, 1100, 1200]],
])
x + y
array([[[ 11, 22, 33, 44],
[ 55, 66, 77, 88],
[ 99, 110, 121, 132]],
[[ 101, 202, 303, 404],
[ 505, 606, 707, 808],
[ 909, 1010, 1111, 1212]]])
And fixed-length Awkward Arrays made from these can be broadcasted the same way:
ak.Array(x) + ak.Array(y)
[[[11, 22, 33, 44], [55, 66, 77, 88], [99, 110, 121, 132]], [[101, 202, 303, 404], [505, 606, ..., 808], [909, 1010, 1111, 1212]]] ----------------------------------------------------------------------- backend: cpu nbytes: 192 B type: 2 * 3 * 4 * int64
but only because the latter have completely regular dimensions, like their NumPy counterparts.
print(x.shape)
print(y.shape)
(3, 4)
(2, 3, 4)
print(ak.Array(x).type)
print(ak.Array(y).type)
3 * 4 * int64
2 * 3 * 4 * int64
In both NumPy and Awkward Array, x
has fewer dimensions than y
, so x
is expanded on the left from length-1 to length-2.
However, if the Awkward Array has variable-length type, regardless of whether the actual lists have variable lengths,
print(ak.Array(x.tolist()).type)
print(ak.Array(y.tolist()).type)
3 * var * int64
2 * var * var * int64
this broadcasting does not work:
ak.Array(x.tolist()) + ak.Array(y.tolist())
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[15], line 1
----> 1 ak.Array(x.tolist()) + ak.Array(y.tolist())
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_operators.py:54, in _binary_method.<locals>.func(self, other)
51 if _disables_array_ufunc(other):
52 return NotImplemented
---> 54 return ufunc(self, other)
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/highlevel.py:1616, in Array.__array_ufunc__(self, ufunc, method, *inputs, **kwargs)
1551 """
1552 Intercepts attempts to pass this Array to a NumPy
1553 [universal functions](https://docs.scipy.org/doc/numpy/reference/ufuncs.html)
(...)
1613 See also #__array_function__.
1614 """
1615 name = f"{type(ufunc).__module__}.{ufunc.__name__}.{method!s}"
-> 1616 with ak._errors.OperationErrorContext(name, inputs, kwargs):
1617 return ak._connect.numpy.array_ufunc(ufunc, method, inputs, kwargs)
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_errors.py:80, in ErrorContext.__exit__(self, exception_type, exception_value, traceback)
78 self._slate.__dict__.clear()
79 # Handle caught exception
---> 80 raise self.decorate_exception(exception_type, exception_value)
81 else:
82 # Step out of the way so that another ErrorContext can become primary.
83 if self.primary() is self:
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/highlevel.py:1617, in Array.__array_ufunc__(self, ufunc, method, *inputs, **kwargs)
1615 name = f"{type(ufunc).__module__}.{ufunc.__name__}.{method!s}"
1616 with ak._errors.OperationErrorContext(name, inputs, kwargs):
-> 1617 return ak._connect.numpy.array_ufunc(ufunc, method, inputs, kwargs)
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_connect/numpy.py:469, in array_ufunc(ufunc, method, inputs, kwargs)
461 raise TypeError(
462 "no {}.{} overloads for custom types: {}".format(
463 type(ufunc).__module__, ufunc.__name__, ", ".join(error_message)
464 )
465 )
467 return None
--> 469 out = ak._broadcasting.broadcast_and_apply(
470 inputs,
471 action,
472 depth_context=depth_context,
473 lateral_context=lateral_context,
474 allow_records=False,
475 function_name=ufunc.__name__,
476 )
478 out_named_axis = functools.reduce(
479 _unify_named_axis, lateral_context[NAMED_AXIS_KEY].named_axis
480 )
481 if len(out) == 1:
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:1200, in broadcast_and_apply(inputs, action, depth_context, lateral_context, allow_records, left_broadcast, right_broadcast, numpy_to_regular, regular_to_jagged, function_name, broadcast_parameters_rule)
1198 backend = backend_of(*inputs, coerce_to_common=False)
1199 isscalar = []
-> 1200 out = apply_step(
1201 backend,
1202 broadcast_pack(inputs, isscalar),
1203 action,
1204 0,
1205 depth_context,
1206 lateral_context,
1207 {
1208 "allow_records": allow_records,
1209 "left_broadcast": left_broadcast,
1210 "right_broadcast": right_broadcast,
1211 "numpy_to_regular": numpy_to_regular,
1212 "regular_to_jagged": regular_to_jagged,
1213 "function_name": function_name,
1214 "broadcast_parameters_rule": broadcast_parameters_rule,
1215 },
1216 )
1217 assert isinstance(out, tuple)
1218 return tuple(broadcast_unpack(x, isscalar) for x in out)
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:1178, in apply_step(backend, inputs, action, depth, depth_context, lateral_context, options)
1176 return result
1177 elif result is None:
-> 1178 return continuation()
1179 else:
1180 raise AssertionError(result)
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:1147, in apply_step.<locals>.continuation()
1145 # Any non-string list-types?
1146 elif any(x.is_list and not is_string_like(x) for x in contents):
-> 1147 return broadcast_any_list()
1149 # Any RecordArrays?
1150 elif any(x.is_record for x in contents):
File ~/micromamba/envs/awkward-docs/lib/python3.11/site-packages/awkward/_broadcasting.py:659, in apply_step.<locals>.broadcast_any_list()
657 nextparameters.append(x._parameters)
658 else:
--> 659 raise ValueError(
660 "cannot broadcast RegularArray of size "
661 f"{x.size} with RegularArray of size {dim_size}{in_function(options)}"
662 )
663 else:
664 nextinputs.append(x)
ValueError: cannot broadcast RegularArray of size 2 with RegularArray of size 3 in add
This error occurred while calling
numpy.add.__call__(
<Array [[1, 2, 3, 4], ..., [9, 10, 11, 12]] type='3 * var * int64'>
<Array [[[10, 20, 30, 40], ...], ...] type='2 * var * var * int64'>
)
Instead of trying to add a dimension to the left of x
’s shape, (3, 4)
, to make (2, 3, 4)
, the ragged broadcasting is trying to add a dimension to the right of x
’s shape, and it doesn’t line up.
Why does ragged broadcasting have to be different?#
Instead of adding a new dimension on the left, as NumPy and fixed-length Awkward Arrays do, ragged broadcasting tries to add a new dimension on the right in order to make it useful for emulating imperative code like
for x_i, y_i in zip(x, y):
for x_ij, y_ij in zip(x_i, y_i):
print("[", end=" ")
for y_ijk in y_ij:
print(x_ij + y_ijk, end=" ")
print("]")
print()
[ 11 21 31 41 ]
[ 52 62 72 82 ]
[ 93 103 113 123 ]
[ 105 205 305 405 ]
[ 506 606 706 806 ]
[ 907 1007 1107 1207 ]
In the above, the value of x_ij
is not varying while y_ijk
varies in the innermost for-loop. In imperative code like this, it’s natural for the outermost (left-most) dimensions of two nested lists to line up, while a scalar from the list with fewer dimensions, x
, stays constant (is effectively duplicated) for each innermost y
value.
This is not what NumPy’s left-broadcasting does:
x + y
array([[[ 11, 22, 33, 44],
[ 55, 66, 77, 88],
[ 99, 110, 121, 132]],
[[ 101, 202, 303, 404],
[ 505, 606, 707, 808],
[ 909, 1010, 1111, 1212]]])
Notice that the numerical values are different!
To get the behavior we expect from imperative code, we need to right-broadcast, which is what ragged broadcasting in Awkward Array does:
x = ak.Array([
[1.1, 2.2, 3.3],
[],
[4.4, 5.5]
])
y = ak.Array([
[[1], [1, 2], [1, 2, 3]],
[],
[[1, 2, 3, 4], [1, 2, 3, 4, 5]]
])
for x_i, y_i in zip(x, y):
print("[")
for x_ij, y_ij in zip(x_i, y_i):
print(" [", end=" ")
for y_ijk in y_ij:
print(x_ij + y_ijk, end=" ")
print("]")
print("]\n")
x + y
[
[ 2.1 ]
[ 3.2 4.2 ]
[ 4.3 5.3 6.3 ]
]
[
]
[
[ 5.4 6.4 7.4 8.4 ]
[ 6.5 7.5 8.5 9.5 10.5 ]
]
[[[2.1], [3.2, 4.2], [4.3, 5.3, 6.3]], [], [[5.4, 6.4, 7.4, 8.4], [6.5, 7.5, 8.5, 9.5, 10.5]]] ---------------------------------------------------- backend: cpu nbytes: 200 B type: 3 * var * var * float64
In summary,
NumPy left-broadcasts,
Awkward Arrays with fixed-length lists left-broadcast, for consistency with NumPy,
Awkward Arrays with variable-length lists right-broadcast, for consistency with imperative code.
One way to control this is to ensure that all arrays involved in an expression have the same number of dimensions by explicitly expanding them. Implicit broadcasting only happens for arrays of different numbers of dimensions, or if the length of a dimension is 1.
But it might also be the case that your arrays have lists of equal length, so they seem to be regular like a NumPy array, yet their data type says that the lists can be variable-length. Perhaps you got the NumPy-like data from a source that doesn’t enforce fixed lengths, such as Python lists (ak.from_iter()
), JSON (ak.from_json()
), or Parquet (ak.from_parquet()
). Check the array’s ak.type()
to see whether all dimensions are ragged (var *
) or regular (some number *
).
The ak.from_regular()
and ak.to_regular()
functions toggle ragged (var *
) and regular (some number *
) dimensions, and ak.enforce_type()
can be used to cast types like this in general.