ak.flatten#
Defined in awkward.operations.ak_flatten on line 23.
- ak.flatten(array, axis=1, *, highlevel=True, behavior=None, attrs=None)#
- Parameters:
array – Array-like data (anything
ak.to_layout
recognizes).axis (None or int) – If None, the operation flattens all levels of nesting, returning a 1-dimensional array. Otherwise, it flattens at a specified depth. The outermost dimension is
0
, followed by1
, etc., and negative values count backward from the innermost:-1
is the innermost dimension,-2
is the next level up, etc.highlevel (bool) – If True, return an
ak.Array
; otherwise, return a low-levelak.contents.Content
subclass.behavior (None or dict) – Custom
ak.behavior
for the output array, if high-level.attrs (None or dict) – Custom attributes for the output array, if high-level.
Returns an array with one level of nesting removed by erasing the
boundaries between consecutive lists. Since this operates on a level of
nesting, axis=0
is a special case that only removes values at the
top level that are equal to None.
Consider the following.
>>> array = ak.Array([[[1.1, 2.2, 3.3],
... [],
... [4.4, 5.5],
... [6.6]],
... [],
... [[7.7],
... [8.8, 9.9]
... ]])
At axis=1
, the outer lists (length 4, length 0, length 2) become a single
list (of length 6).
>>> ak.flatten(array, axis=1).show()
[[1.1, 2.2, 3.3],
[],
[4.4, 5.5],
[6.6],
[7.7],
[8.8, 9.9]]
At axis=2
, the inner lists (lengths 3, 0, 2, 1, 1, and 2) become three
lists (of lengths 6, 0, and 3).
>>> ak.flatten(array, axis=2).show()
[[1.1, 2.2, 3.3, 4.4, 5.5, 6.6],
[],
[7.7, 8.8, 9.9]]
There’s also an option to completely flatten the array with axis=None
.
This is useful for passing the data to a function that doesn’t care about
nested structure, such as a plotting routine.
>>> ak.flatten(array, axis=None).show()
[1.1,
2.2,
3.3,
4.4,
5.5,
6.6,
7.7,
8.8,
9.9]
Missing values are eliminated by flattening: there is no distinction between an empty list and a value of None at the level of flattening.
>>> array = ak.Array([[1.1, 2.2, 3.3], None, [4.4], [], [5.5]])
>>> ak.flatten(array, axis=1)
<Array [1.1, 2.2, 3.3, 4.4, 5.5] type='5 * float64'>
As a consequence, flattening at axis=0
does only one thing: it removes
None values from the top level.
>>> ak.flatten(array, axis=0)
<Array [[1.1, 2.2, 3.3], [4.4], [], [5.5]] type='4 * var * float64'>
As a technical detail, the flattening operation can be trivial in a common
case, ak.contents.ListOffsetArray
in which the first offset
is 0
.
In that case, the flattened data is simply the array node’s content
.
>>> array = ak.Array([[0.0, 1.1, 2.2], [], [3.3, 4.4], [5.5], [6.6, 7.7, 8.8, 9.9]])
>>> array.layout
<ListOffsetArray len='5'>
<offsets><Index dtype='int64' len='6'>
[ 0 3 3 5 6 10]
</Index></offsets>
<content><NumpyArray dtype='float64' len='10'>
[0. 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9]
</NumpyArray></content>
</ListOffsetArray>
>>> ak.flatten(array).layout
<NumpyArray dtype='float64' len='10'>
[0. 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9]
</NumpyArray>
>>> array.layout.content
<NumpyArray dtype='float64' len='10'>
[0. 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9]
</NumpyArray>
However, it is important to keep in mind that this is a special case:
ak.flatten
and content
are not interchangeable!
>>> array = ak.Array(
... ak.contents.ListArray(
... ak.index.Index64(np.array([ 9, 100, 5, 8, 1])),
... ak.index.Index64(np.array([12, 100, 7, 9, 5])),
... ak.contents.NumpyArray(
... np.array([999, 6.6, 7.7, 8.8, 9.9, 3.3, 4.4, 999, 5.5, 0., 1.1, 2.2, 999])
... ),
... )
... )
>>> array.show()
[[0, 1.1, 2.2],
[],
[3.3, 4.4],
[5.5],
[6.6, 7.7, 8.8, 9.9]]
>>> ak.flatten(array).show()
[0,
1.1,
2.2,
3.3,
4.4,
5.5,
6.6,
7.7,
8.8,
9.9]
>>> ak.Array(array.layout.content).show()
[999,
6.6,
7.7,
8.8,
9.9,
3.3,
4.4,
999,
5.5,
0,
1.1,
2.2,
999]