ak.pad_none#
Defined in awkward.operations.ak_pad_none on line 21.
- ak.pad_none(array, target, axis=1, *, clip=False, highlevel=True, behavior=None, attrs=None)#
- Parameters:
array – Array-like data (anything
ak.to_layout
recognizes).target (int) – The intended length of the lists. If
clip=True
, the output lists will have exactly this length; otherwise, they will have at least this length.axis (int) – The dimension at which this operation is applied. The outermost dimension is
0
, followed by1
, etc., and negative values count backward from the innermost:-1
is the innermost dimension,-2
is the next level up, etc.clip (bool) – If True, the output lists will have regular lengths (
ak.types.RegularType
) of exactlytarget
; otherwise the output lists will have in-principle variable lengths (ak.types.ListType
) of at leasttarget
.highlevel (bool) – If True, return an
ak.Array
; otherwise, return a low-levelak.contents.Content
subclass.behavior (None or dict) – Custom
ak.behavior
for the output array, if high-level.attrs (None or dict) – Custom attributes for the output array, if high-level.
Increase the lengths of lists to a target length by adding None values.
Consider the following
>>> array = ak.Array([[[1.1, 2.2, 3.3],
... [],
... [4.4, 5.5],
... [6.6]],
... [],
... [[7.7],
... [8.8, 9.9]
... ]])
At axis=0
, this operation pads the whole array, adding None at the
outermost level:
>>> ak.pad_none(array, 5, axis=0).show()
[[[1.1, 2.2, 3.3], [], [4.4, 5.5], [6.6]],
[],
[[7.7], [8.8, 9.9]],
None,
None]
At axis=1
, this operation pads the first nested level:
>>> ak.pad_none(array, 3, axis=1).show()
[[[1.1, 2.2, 3.3], [], [4.4, 5.5], [6.6]],
[None, None, None],
[[7.7], [8.8, 9.9], None]]
And so on for higher values of axis
:
>>> ak.pad_none(array, 2, axis=2).show()
[[[1.1, 2.2, 3.3], [None, None], [4.4, 5.5], [6.6, None]],
[],
[[7.7, None], [8.8, 9.9]]]
Note that the clip
parameter not only determines whether the lengths are
at least target
or exactly target
, it also determines the type of the
output:
clip=True
returns regular lists (ak.types.RegularType
), andclip=False
returns in-principle variable lengths (ak.types.ListType
).
The in-principle variable-length lists might, in fact, all have the same
length, but the type difference is significant, for instance in
broadcasting rules (see ak.broadcast_arrays
).
The difference between
>>> ak.pad_none(array, 2, axis=2)
<Array [[[1.1, 2.2, 3.3], ..., [...]], ...] type='3 * var * var * ?float64'>
and
>>> ak.pad_none(array, 2, axis=2, clip=True)
<Array [[[1.1, 2.2], ..., [6.6, None]], ...] type='3 * var * 2 * ?float64'>
is not just in the length of [1.1, 2.2, 3.3]
vs [1.1, 2.2]
, but also
in the distinction between the following types.
>>> ak.pad_none(array, 2, axis=2).type.show()
3 * var * var * ?float64
>>> ak.pad_none(array, 2, axis=2, clip=True).type.show()
3 * var * 2 * ?float64